Write a quadratic equation in standard form with the given root(s).

17.7

SOLUTION:

Write the pattern.

$$
(x-p)(x-q)=0
$$

Since there is only one root, it is a repeated root. Replace p and q with 7 .

$$
(x-7)(x-7)=0
$$

Use the FOIL method to multiply.

$$
\begin{aligned}
x(x)+x(-7)-7(x)-7(-7) & =0 \\
x^{2}-7 x-7 x+49 & =0 \\
x^{2}-14 x+49 & =0
\end{aligned}
$$

19. $\frac{1}{5}, 6$

SOLUTION:

Write the pattern.

$$
(x-p)(x-q)=0
$$

Replace p and q with $\frac{1}{5}$ and 6 .

$$
\left(x-\frac{1}{5}\right)(x-6)=0
$$

Use the FOIL method to multiply.

$$
\begin{aligned}
x(x)+x(-6)-\frac{1}{5}(x)-\frac{1}{5}(-6) & =0 \\
x^{2}-6 x-\frac{1}{5} x+\frac{6}{5} & =0
\end{aligned}
$$

Multiply each side by 5 .

$$
\begin{array}{r}
5 x^{2}-30 x-x+6=0 \\
5 x^{2}-31 x+6=0
\end{array}
$$

Factor each polynomial.
21. $51 c^{3}-34 c$

SOLUTION:

The GCF of the two terms is $17 c$. Factor the GCF.

$$
\begin{aligned}
51 c^{3}-34 c & =17 c\left(3 c^{2}\right)-17 c(2) \\
& =17 c\left(3 c^{2}-2\right)
\end{aligned}
$$

23. $3 x^{2}-12$

SOLUTION:

Factor out 3 .

$$
3 x^{2}-12=3\left(x^{2}-4\right)
$$

Use the identity $a^{2}-b^{2}=(a+b)(a-b)$ to factor $x^{2}-4$.

$$
x^{2}-4=(x+2)(x-2)
$$

Therefore,

$$
3 x^{2}-12=3(x+2)(x-2) .
$$

25. $48 c g+36 c f-4 d g-3 d f$

SOLUTION:

Factor $12 c$ from the first two terms and $-d$ from the last two terms.

$$
\begin{aligned}
& 48 c g+36 c f-4 d g-3 d f \\
& =12 c(4 g+3 f)-d(4 g+3 f)
\end{aligned}
$$

Factor $4 g+3 f$ from the two terms.

$$
\begin{gathered}
12 c(4 g+3 f)-d(4 g+3 f) \\
=(4 g+3 f)(12 c-d)
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
48 c g+36 c f-4 d g-3 d f \\
=(4 g+3 f)(12 c-d)
\end{gathered}
$$

27. $x^{2}-9 x-22$

SOLUTION:

Find the factors of -22 whose sum is -9 .
$2(-11)=-22$ and $2+(-11)=-9$

Write $-9 x$ as $2 x-11 x$.
$x^{2}-9 x-22=x^{2}+2 x-11 x-22$

Factor x from the first two terms and -11 from the last two terms.
$x^{2}+2 x-11 x-22=x(x+2)-11(x+2)$
Factor $x+2$ from the two terms.
$x(x+2)-11(x+2)=(x+2)(x-11)$
Therefore,

$$
x^{2}-9 x-22=(x+2)(x-11)
$$

29. $15 x^{2}+7 x-2$

SOLUTION:

Here, $a=15, b=7$ and $c=-2$.
$a c=15(-2)=-30$

Find two factors of -30 whose sum is 7 .
$10(-3)=-30$ and $10+(-3)=7$
Write $7 x$ as $10 x-3 x$.
$15 x^{2}+7 x-2=15 x^{2}+10 x-3 x-2$
Factor $5 x$ from the first two terms and -1 from the last two terms. $15 x^{2}+10 x-3 x-2=5 x(3 x+2)-1(3 x+2)$

Factor $3 x+2$ from the two terms.
$5 x(3 x+2)-1(3 x+2)=(3 x+2)(5 x-1)$
Therefore,
$15 x^{2}+7 x-2=(3 x+2)(5 x-1)$.
31. $18 x^{2}+15 x-12$

SOLUTION:

Here, $a=18, b=15$ and $c=-12$.
$a c=18(-12)=-216$
Find two factors of -216 whose sum is 15 .
$24(-9)=-216$ and $24+(-9)=15$
Write $15 x$ as $24 x+(-9) x$.

$$
18 x^{2}+15 x-12=18 x^{2}+24 x-9 x-12
$$

Factor $6 x$ from the first two terms and -3 from the last two terms.
$18 x^{2}+24 x-9 x-12=6 x(3 x+4)-3(3 x+4)$
Factor $3 x+4$ from the two terms

$$
\begin{aligned}
6 x(3 x+4)-3(3 x+4) & =(6 x-3)(3 x+4) \\
& =3(2 x-1)(3 x+4)
\end{aligned}
$$

Therefore,
$18 x^{2}+15 x-12=3(2 x-1)(3 x+4)$.
33. $9 x^{2}-25$

SOLUTION:

Use the identity $a^{2}-b^{2}=(a+b)(a-b)$

$$
\begin{aligned}
9 x^{2}-25 & =(3 x)^{2}-(5)^{2} \\
& =(3 x+5)(3 x-5)
\end{aligned}
$$

Therefore,
$9 x^{2}-25=(3 x+5)(3 x-5)$.
35. $15 x^{2}-84 x-36$

SOLUTION:

Factor 3 from all the three terms.
$15 x^{2}-84 x-36=3\left(5 x^{2}-28 x-12\right)$
Factor $5 x^{2}-28 x-12$.
Here, $a=5, b=-28$ and $c=-12$.
$a c=5(-12)=-60$
Find two factors of -60 whose sum is -28 .
$-30(2)=-60$ and $-30+2=-28$
Write $-28 x$ as $-30 x+2 x$.

$$
5 x^{2}-28 x-12=5 x^{2}-30 x+2 x-12
$$

Factor $5 x$ from the first two terms and 2 from the last two terms.

$$
5 x^{2}-30 x+2 x-12=5 x(x-6)+2(x-6)
$$

Factor $x-6$ from the two terms.

$$
5 x(x-6)+2(x-6)=(5 x+2)(x-6)
$$

Therefore,
$15 x^{2}-84 x-36=3(5 x+2)(x-6)$.

4-3 Solving Quadratic Equations by Factoring
37. $12 x y^{2}-108 x$

SOLUTION:
Factor out the GCF, $12 x$.
$12 x y^{2}-108 x=12 x\left(y^{2}-9\right)$
Use the identity $a^{2}-b^{2}=(a+b)(a-b)$ to factor $y^{2}-9$.
$y^{2}-9=(y+3)(y-3)$

Therefore,
$12 x y^{2}-108 x=12 x(y+3)(y-3)$.

Solve each equation by factoring.

39. $x^{2}-5 x-24=0$

SOLUTION:

Find the factors of -24 whose sum is -5 .

$$
3(-8)=-24 \text { and } 3+(-8)=-5
$$

Write $-5 x$ as $3 x+(-5 x)$.

$$
\begin{array}{r}
x^{2}-5 x-24=0 \\
x^{2}+3 x-8 x-24=0
\end{array}
$$

Factor x from the first two terms and -8 from the last two terms.

$$
\begin{aligned}
x^{2}+3 x-8 x-24 & =0 \\
x(x+3)-8(x+3) & =0
\end{aligned}
$$

Factor $x+3$ from the two terms.

$$
\begin{array}{r}
x(x+3)-8(x+3)=0 \\
(x+3)(x-8)=0
\end{array}
$$

Use the Zero Product Property.

$$
\begin{aligned}
(x+3)(x-8)=0 & \Rightarrow x+3=0 \quad \text { or } x-8=0 \\
& \Rightarrow x=-3 \quad \text { or } x=8
\end{aligned}
$$

Therefore, the roots are -3 and 8 .
41. $x^{2}+13=17$

SOLUTION:

Write the equation with right side equal to zero.

$$
\begin{aligned}
& x^{2}+13-17=0 \\
& x^{2}-4=0
\end{aligned}
$$

Use the identity $a^{2}-b^{2}=(a+b)(a-b)$ to factor $x^{2}-4$.

$$
x^{2}-4=(x+2)(x-2)=0
$$

Use the Zero Product Property.

$$
\begin{aligned}
(x+2)(x-2)=0 & \Rightarrow x+2=0 \quad \text { or } x-2=0 \\
\Rightarrow x=-2 & \text { or } x=2
\end{aligned}
$$

Therefore, the roots are -2 and 2 .
43. $-8 x^{2}+46 x-30=0$

SOLUTION:

Factor out -1.

$$
\begin{aligned}
-1\left(8 x^{2}-46 x+30\right) & =0 \\
8 x^{2}-46 x+30 & =0
\end{aligned}
$$

Now factor $8 x^{2}-46 x+30$.

Here, $a=8, b=-46$ and $c=30$.
$a c=8(30)=240$
Find two factors of 240 whose sum is -46 .
$-40(-6)=240$ and $-40+(-6)=-46$
Write $-46 x$ as $-40 x+(-6 x)$.

$$
8 x^{2}-46 x+30=8 x^{2}-40 x-6 x+30
$$

Factor $8 x$ from the first two terms and -6 from the last two terms.

$$
\begin{aligned}
& 8 x^{2}-40 x-6 x+30=0 \\
& 8 x(x-5)-6(x-5)=0
\end{aligned}
$$

Factor $x-5$ from the two terms.

$$
(x-5)(8 x-6)=0
$$

Use the Zero Product Property.

$$
\begin{array}{rlrl}
(x-5)(8 x-6)=0 \Rightarrow x-5=0 & \text { or } 8 x-6 & =0 \\
\Rightarrow x=5 & \text { or } x & =\frac{6}{8} \\
& =\frac{3}{4}
\end{array}
$$

Therefore, the roots are 5 and $\frac{3}{4}$.

