4-8 Triangles and Coordinate Proof

13.

Name the missing coordinate(s) of each triangle.

SOLUTION:

$\triangle Z C Y$ has two congruent sides, so it is isosceles. Here, $Z Y=C Y$. The point Y is on the x-axis, so its y-coordinate is 0 . The coordinates of Y are $(a, 0)$. So, $Z Y=C Y=a$. The point C lies on the line $x=a$. So, its x-coordinate is a. It lies a units above the x-axis since $C Y=a$. So, its y-coordinate is a. Hence C is (a, a).
15.

SOLUTION:

$\Delta N J L$ has two congruent sides, so it is isosceles. Here, $N J=J L$. Point N is at origin, so its coordinates are (0,0). Point L is on the x-axis, so its y-coordinate is 0 . The coordinates of L are ($3 a, 0$). Find the coordinates of point J, that makes the triangle isosceles. This point is half way between N and L, so the x-coordinate is $1.5 a$. Let b be the y coordinate of J. So, the coordinates of J should be($1.5 a, b)$.

17.

SOLUTION:

$\triangle N H D$ has two congruent sides, so it is isosceles. Here, $N H=H D$. Point N is at origin, so its coordinates are $(0,0)$. Point D is on the x-axis, so its y-coordinate is 0 . The coordinates of D are $(4 b, 0)$. Find the x-coordinate of point H, that makes the triangle isosceles. This point is half way between N and D, so the x-coordinate of H should be $\frac{4 b}{2}$ or $2 b$. Therefore, the coordinates of point H are $(2 b, 2 b \sqrt{3})$.

4-8 Triangles and Coordinate Proof

CCSS ARGUMENTS Write a coordinate proof for each statement.

19. The segments joining the base vertices to the midpoints of the legs of an isosceles triangle are congruent.

SOLUTION:

Draw isosceles triangle $A B C$ on a coordinate plane, find the midpoints R and S of the two legs, and show that the segments connecting each midpoint with the opposite vertex have the same length. Start by placing a vertex at the origin and label it A. Use coordinates that are multiples of 2 because the Midpoint Formula involves dividing the sum of the coordinates by 2 . So, place point B on the x-axis at ($4 a, 0$). Since the triangle is isosceles, the x-coordinate of point C is halfway between 0 and $4 a$ or $2 a$. We cannot write the y-coordinate in terms of a, so call it $2 b$.

Given: Isosceles $\triangle A B C$ with $\overline{A C} \cong \overline{B C}$;
R and S are midpoints of legs $\overline{A C}$ and $\overline{B C}$.

Prove: $\overline{A S} \cong \overline{B R}$
Proof:
The coordinates of S are $\left(\frac{2 a+4 a}{2}, \frac{2 b+0}{2}\right)$ or $(3 a, b)$.
The coordinates of R are $\left(\frac{2 a+0}{2}, \frac{2 b+0}{2}\right)$ or (a, b).

$$
\begin{aligned}
& A S=\sqrt{(3 a-0)^{2}+(b-0)^{2}} \text { or } \sqrt{9 a^{2}+b^{2}} \\
& B R=\sqrt{(4 a-a)^{2}+(0-b)^{2}} \text { or } \sqrt{9 a^{2}+b^{2}}
\end{aligned}
$$

Since $A S=B R, \overline{A S} \cong \overline{B R}$.

4-8 Triangles and Coordinate Proof

PROOF Write a coordinate proof for each statement.

21. The measure of the segment that joins the vertex of the right angle in a right triangle to the midpoint of the hypotenuse is one-half the measure of the hypotenuse.

SOLUTION:

Draw right triangle $A B C$ on a coordinate plane, find the midpoint P of the hypotenuse, and show that the length of the segment joining the midpoint and the vertex of the right angle is one-half the length of the hypotenuse. Start by placing a vertex at the origin and label it A. Use coordinates that are multiples of 2 because the Midpoint Formula involves dividing the sum of the coordinates by 2 . Place point C on the x-axis at ($2 c, 0$). Since the triangle is right, place point B on the y-axis at $(0,2 b)$.

Given: Right $\triangle A B C$ with right $\angle B A C ; P$ is the midpoint of $\overline{B C}$.

Prove: $A P=\frac{1}{2} B C$
Proof:
Midpoint P is $\left(\frac{0+2 c}{2}, \frac{2 b+0}{2}\right)$ or (c, b).
$A P=\sqrt{(c-0)^{2}+(b-0)^{2}}$ or $\sqrt{c^{2}+b^{2}}$
$B C=\sqrt{(2 c-0)^{2}+(0-2 b)^{2}}=\sqrt{4 c^{2}+4 b^{2}}$ or $2 \sqrt{c^{2}+b^{2}}$
$\frac{1}{2} B C=\sqrt{c^{2}+b^{2}}$
So, $A P=\frac{1}{2} B C$.

