Find the slope of the line that passes through each pair of points. Express as a fraction in simplest form.
12. $(-2,11),(5,6)$

$$
\begin{aligned}
& \text { SOLUTION: } \begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{6-11}{5-(-2)} \\
& =\frac{-5}{5+2} \\
& =-\frac{5}{7}
\end{aligned}
\end{aligned}
$$

The slope of the line that passes through $(-2,11)$ and $(5,6)$ is $-\frac{5}{7}$.
15. (-4.5, 9.5), (-1, 2.5)

SOLUTION:

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{2.5-9.5}{-1-(-4.5)} \\
& =\frac{-7}{-1+4.5} \\
& =-\frac{7}{3.5} \\
& =-2
\end{aligned}
$$

The slope of the line that passes through ($-4.5,9.5$) and $(-1,2.5)$ is -2 .

Determine the rate of change of each graph.

18.

SOLUTION:

The graph passes through the points $(0,4)$ and $(8$, 20).

$$
\begin{aligned}
\text { Rate of change } & =\frac{\text { change in } y}{\text { change in } x} \\
& =\frac{20-4}{8-0} \\
& =\frac{16}{8} \\
& =2
\end{aligned}
$$

So, the rate of change is 2 .
21.

SOLUTION:

The graph passes through $(0,16)$ and $(5,12)$.

$$
\begin{aligned}
\text { Rate of change } & =\frac{\text { change in } y}{\text { change in } x} \\
& =\frac{12-16}{5-0} \\
& =\frac{-4}{5} \\
& =-0.8
\end{aligned}
$$

So, the rate of change is -0.8 .

