State whether each equation or function is a linear function. Write yes or no. Explain.

18. $h(x)=6$

SOLUTION:

A linear function is a function with ordered pairs that satisfy a linear equation of the form $y=m x+b$.

Yes; it can be written in $f(x)=m x+b$ form, where $m=0$ and $b=6$.
21. $f(x)=\sqrt{7-x}$

SOLUTION:

A linear function is a function with ordered pairs that satisfy a linear equation of the form $y=m x+b$.

No; it cannot be written $\operatorname{in} f(x)=m x+b$ form.
24. $f(x)=\frac{4 x}{5}+\frac{8}{3}$

SOLUTION:

A linear function is a function with ordered pairs that satisfy a linear equation of the form $y=m x+b$.

Yes; it can be written $\operatorname{in} f(x)=m x+b$ form, where $m=\frac{4}{5}$ and $b=\frac{8}{3}$.

Write each equation in standard form. Identify A, B, and C.
27. $8 x+3 y+6=0$

SOLUTION:

The standard form of a linear equation is $A x+B y=$ C, where A, B, and C are integers with a greatest common factor of $1, A \geq 0$, and A and B are not both zero.

$$
\begin{aligned}
8 x+3 y+6 & =0 \\
8 x+3 y & =-6
\end{aligned}
$$

$A=8, B=3$, and $C=-6$.
30. $3 y=9 x-12$

SOLUTION:

The standard form of a linear equation is $A x+B y=$ C, where A, B, and C are integers with a greatest common factor of $1, A \geq 0$, and A and B are not both zero.

$$
\begin{aligned}
3 y & =9 x-12 \\
-9 x+3 y & =-12 \\
9 x-3 y & =12 \\
3 x-y & =4
\end{aligned}
$$

$A=3, B=-1$, and $C=4$.
33. $\frac{4}{5} y+\frac{1}{8} x=4$

SOLUTION:

The standard form of a linear equation is $A x+B y=$ C, where A, B, and C are integers with a greatest common factor of $1, A \geq 0$, and A and B are not both zero.
$\frac{4}{5} y+\frac{1}{8} x=4$
$32 y+5 x=160$
$5 x+32 y=160$
$A=5, B=32$, and $C=160$.

Find the x-intercept and the y-intercept of the graph of each equation. Then graph the equation using the intercepts.
36. $5 y=15 x-90$

SOLUTION:
The y-coordinate of the point at which a graph crosses the y-axis is called the y-intercept.
Likewise, the x-coordinate of the point at which it crosses the x-axis is called the x-intercept.

The equation is $5 y=15 x-90$.
The x-intercept is the value of x when $y=0$.
So, the x-intercept is 6 .
The y-intercept is the value of y when $x=0$. So, the y-intercept is -18 .

39. $\frac{1}{3} x-\frac{2}{9} y=4$

SOLUTION:

The y-coordinate of the point at which a graph crosses the y-axis is called the y-intercept.
Likewise, the x-coordinate of the point at which it crosses the x-axis is called the x-intercept.

The equation is $\frac{1}{3} x-\frac{2}{9} y=4$.
The x-intercept is the value of x when $y=0$.
So, the x-intercept is 12 .
The y-intercept is the value of y when $x=0$.
So, the y-intercept is -18 .

