Use the figure at the right.

2. Name the sides of $\angle 3$.

SOLUTION:
$\overrightarrow{X W}, \overrightarrow{X U}$
3. What is another name for $\angle 2$?

SOLUTION:
$\angle X Y U, \angle U Y X$
4. What is another name for $\angle U X Y$?

SOLUTION:
$\angle 1, \angle Y X U$
Copy the diagram shown, and extend each ray. Classify each angle as right, acute, or obtuse.
Then use a protractor to measure the angle to the nearest degree.

5. $\angle C F D$

SOLUTION:

$\angle \mathrm{CFD}$ is an acute angle. The measure of $\angle \mathrm{CFD}$ is 40.
6. $\angle A F D$

SOLUTION:

$\angle \mathrm{AFD}$ is an obtuse angle. The measure of $\angle \mathrm{AFD}$ is 150 .
7. $\angle B F C$

SOLUTION:

$\angle \mathrm{BFC}$ is a right angle. The measure of $\angle \mathrm{BFC}$ is 90.
8. $\angle A F B$

SOLUTION:

$\angle \mathrm{AFB}$ is an acute angle. The measure of $\angle \mathrm{AFB}$ is 25

ALGEBRA In the figure, $\overrightarrow{K J}$ and $\overrightarrow{K L}$ are opposite rays, $\overrightarrow{K N}$ bisects $\angle L K M$.

9. If $m \angle L K M=7 x-5$ and $m \angle N K M=3 x+9$, find $m \angle L K M$.

SOLUTION:

$m \angle L K M=m \angle L K N+m \angle N K M$. Because of the definition of bisecting rays, $m \angle L K N=m \angle N K M$.

$$
\begin{aligned}
m \angle L K M & =m \angle L K N+m \angle N K M & & \text { Definition of bisecting ray } \\
m \angle L K M & =m \angle N K M+m \angle N K M & & \text { Substitution } \\
m \angle L K M & =2(m \angle N K M) & & \text { Addition. } \\
7 x-5 & =2(3 x+9) & & \text { Substitution. } \\
7 x-5 & =6 x+18 & & \text { Distributive Property } \\
7 x-6 x-5 & =6 x-6 x+18 & & \text { Subtract } 6 x \text { from each side. } \\
x-5 & =18 & & \text { Simplify. } \\
x-5+5 & =18+5 & & \text { Add } 5 \text { to each side. } \\
x & =23 & & \text { Simplify. }
\end{aligned}
$$

To find , $m \angle L K M$ substitute $x=23$ into the equation $m \angle L K M=7 x-5$,

$$
\begin{aligned}
7 x-5 & =7(23)-5 \\
& =161-5 \\
& =156
\end{aligned}
$$

10. If $m \angle N K L=7 x-9$ and $m \angle J K M=x+3$, find $m \angle J K N$.

SOLUTION:

By the Angle Addition
Postulate, $m \angle M K J+m \angle N K M+m \angle L K N=180$.

Since $\overrightarrow{K N}$ bisects
$\angle L K M, m \angle N K M=m \angle N K L$.
Thus, $m \angle M K J+m \angle L K N+m \angle L K N=180$.

$$
\begin{aligned}
m \angle M K J+m \angle L K N+m \angle L K N & =180 & & \\
x+3+7 x-9+7 x-9 & =180 & & \text { Substitution. } \\
15 x-15 & =180 & & \text { Simplify } \\
15 x-15+15 & =180+15 & & \text { Add } 15 \text { to each side. } \\
15 x & =195 & & \text { Simplify. } \\
\frac{15 x}{15} & =\frac{195}{15} & & \text { Divide each side by } 15 . \\
x & =13 & & \text { Simplify. }
\end{aligned}
$$

Find an expression for $m \angle J K N$.

$$
\begin{aligned}
m \angle J K N & =m \angle J K M+m \angle N K M \\
& =x+3+7 x-9 \\
& =8 x-6
\end{aligned}
$$

To find $8 x-6$, substitute the value 13 for x.

$$
\begin{aligned}
m \angle J K N & =8(13)-6 \\
& =104-6 \\
& =98
\end{aligned}
$$

11. CCSS PRECISION A miter cut is used to build picture frames with corners that meet at right angles. a. José miters the ends of some wood for a picture frame at congruent angles. What is the degree measure of his cut? Explain and classify the angle. b. What does the joint represent in relation to the angle formed by the two pieces?

SOLUTION:

a. 45; When joined together, the angles form a right angle, which measures 90 . If the two angles that form this right angle are congruent, then the measure of each angle is $90 \div 2$ or 45 . The angle of the cut is an acute angle.
b. The joint is the angle bisector of the frame angle.

For Exercises 12-29, use the figure below.

Name the vertex of each angle.
12. $\angle 4$

SOLUTION:
Q
13. $\angle 7$

SOLUTION:
P
14. $\angle 2$

SOLUTION:
R
15. $\angle 1$

SOLUTION:
M
Name the sides of each angle.
16. $\angle T P Q$

SOLUTION:
$\overrightarrow{P T}, \overrightarrow{P Q}$
17. $\angle V N M$

SOLUTION:
$\overrightarrow{N V}, \overline{N M}$
18. $\angle 6$

SOLUTION:
$\overline{N M}, \overline{N R}$
19. $\angle 3$

SOLUTION:
$\overrightarrow{R P}, \overrightarrow{R Q}$

Write another name for each angle.
20. $\angle 9$

SOLUTION:
$\angle M R S, \angle S R M$
21. $\angle Q P T$

SOLUTION:
$\angle T P Q$
22. $\angle M Q S$

SOLUTION:
$\angle 4, \angle S Q M, \angle M Q R, \angle R Q M, \angle N Q S, \angle S Q N$, $\angle N Q R, \angle R Q N, \angle P Q R, \angle R Q P, \angle P Q S$,
$\angle S Q P$
23. $\angle 5$

SOLUTION:
$\angle T P N, \angle N P T, \angle T P M, \angle M P T$
24. Name an angle with vertex N that appears obtuse.

SOLUTION:
Sample answer: $\angle V N Q$
25. Name an angle with vertex Q that appears acute.

SOLUTION:
$\angle 4$
26. Name a point in the interior of $\angle V R Q$.

SOLUTION:
P, T
27. Name a point in the exterior of $\angle M R T$.

SOLUTION:
S, Q
28. Name a pair of angles that share exactly one point.

SOLUTION:
Sample answer: $\angle 6$ and $\angle 8$ share the vertex point N.
29. Name a pair of angles that share more than one point.

SOLUTION:

Sample answer: $\angle M P R$ and $\angle P R Q$ share points P and R.

ALGEBRA In the figure, $\overrightarrow{B A}$ and $\overrightarrow{B C}$ are opposite rays. $\overrightarrow{B H}$ bisects $\angle E B C$.

37. If $m \angle A B E=2 n+7$ and $m \angle E B F=4 n-13$, find $m \angle A B E$.

SOLUTION:

Since $\angle A B E \cong \angle E B F, m \angle A B E=m \angle E B F$.
So, $2 n+7=4 n-13$.

$$
\begin{aligned}
m \angle A B E & =m \angle E B F & & \\
2 n+7 & =4 n-13 & & \text { Substitution. } \\
2 n-4 n+7 & =4 n-4 n-13 & & \text { Subtract 4nfrom each side. } \\
-2 n+7 & =-13 & & \text { Simplify. } \\
-2 n+7-7 & =-13-7 & & \text { Subtract } 7 \text { from each side. } \\
-2 n & =-20 & & \text { Simplify. } \\
\frac{-2 n}{-2} & =\frac{-20}{-2} & & \text { Divide each side by }-2 . \\
n & =10 & & \text { Simplify. }
\end{aligned}
$$

Substitute.

$$
\begin{aligned}
m \angle A B E & =2 n+7 \\
& =2(10)+7 \\
& =27
\end{aligned}
$$

47. PHYSICS When you look at a pencil in water, it looks bent. This illusion is due to refraction, or the bending of light when it moves from one substance to the next.
Refer to Page 43.

a. What is $m \angle 1$? Classify this angle as acute, right, or obtuse.
b. What is $m \angle 2$? Classify this angle as acute, right, or obtuse.
c. Without measuring, determine how many degrees the path of the light changes after it enters the water. Explain your reasoning.

SOLUTION:

a. Use a protractor to measure $\angle 1$ in the diagram. The measure should be about 110; Since the measure is greater than 90 but less than 180 , the angle is obtuse.
b. Use a protractor to measure $\angle 2$ in the diagram.

The measure should be about 85 ; Since the measure is less than 90 , the angle is acute.
c. about 15 ; If the original path of the light is extended, the measure of the angle the original path makes with the refracted path represents the number of degrees the path of the light changed. The sum of the measure of this angle and the $m \angle 3$ is 180 . The measure of $\angle 3$ is $360-(110+85)$ or 165 , so the measure of the angle the original path makes with the refracted path is $180-165$ or 15 .

