Find the measurement of each segment. Assume that each figure is not drawn to scale.
17. $\overline{S V}$

SOLUTION:
$S T=S V+V T \quad$ Betweenness of points
$S T-V T=S V+V T-V T \quad-V T$ from each side.
$S T-V T=S V \quad$ Simplify
$4.1-2.6=S V \quad$ Substitution
$1.5=S V$
Subtraction.
So, $S V=1.5$ in.
18. $\overline{W Y}$

SOLUTION:

Segments that have the same measure are called congruent segments.
Here, $W Y=Y X$. Let $W Y=Y X=x$.

$$
\begin{aligned}
W X & =W Y+Y X & & \text { Betweenness of points } \\
8.8 & =x+x & & \text { Substitution } \\
8.8 & =2 x & & \text { Simplify } \\
\frac{8.8}{2} & =\frac{2 x}{2} & & \text { Divide each side by } 2 \\
4.4 & =x & & \text { Simplify } .
\end{aligned}
$$

Therefore, $W Y=4.4 \mathrm{~mm}$.
19. $\overline{F G}$

SOLUTION:

Segments that have the same measure are called congruent segments.
Here, $\overline{F G} \cong \overline{G H} \cong \overline{H J} \cong \overline{J K}$.
So, $F G=G H=H J=J K$. Let each of the lengths be x.

$F K$	$=F G+G H+H J+J K$		Betweenness of points
16.8	$=x+x+x+x$		Substitution.
16.8	$=4 x$		Addition.
$\frac{16.8}{4}$	$=\frac{4 x}{4}$		Divide each side by 4.
4.2	$=x$		Simplify.

Therefore, $F G=4.2 \mathrm{~cm}$.

Determine whether each pair of segments is congruent.

27. $\overline{K J}, \overline{H L}$

SOLUTION:

Segments that have the same measure are called congruent segments.
Here, $K J=H L=4 \mathrm{in}$.
Therefore, $\overline{K J} \cong \overline{H L}$.
28. $\overline{A C}, \overline{B D}$

SOLUTION:

Segments that have the same measure are called congruent segments.
Here, $A C=B D=3 \mathrm{ft}$.
Therefore, $\overline{A C} \cong \overline{B D}$.
29. $\overline{E H}, \overline{F G}$

SOLUTION:

Segments that have the same measure are called congruent segments.
Here, $E H=0.45 \mathrm{~cm}$ and $F G=0.5 \mathrm{~cm}$. So, $E H \neq$ $F G$. Therefore, $\overline{E H}$ and $\overline{F G}$ are not congruent.
30. $\overline{V W}, \overline{U Z}$

SOLUTION:

Segments that have the same measure are called congruent segments.
Here, the lengths of the segments $Z Y$ and $V W$ are given to be equal. But the length of $U Z$ is not known. So, the congruency cannot be determined from the information given.
31. $\overline{M N}, \overline{R Q}$

SOLUTION:

Segments that have the same measure are called congruent segments.
Here, $M N=R Q=4 x$.
All segments must have a measure greater than 0 .
Therefore, for all $x>0, \overline{M N} \cong \overline{R Q}$.
32. $\overline{S U}, \overline{V T}$

SOLUTION:

Segments that have the same measure are called congruent segments.
Here, $S U=4 a+a=5 a$ and $R Q=2 a+3 a=5 a$. All segments must have a length greater than 0 . Therefore, for all $a>0, \overline{S U} \cong \overline{V T}$.

